
Intention-based
variant integration

Wilhelm Hedman
Chalmers University of Technology

In collaboration with: Max Lillack, Stefan Stanciulescu,
Thorsten Berger, Andrzej Wasowski

Slides adapted from Stefan!

Agenda
● Background: Clones, clones, clones
● Solution: Intention-based clone integration
● Evaluation: Replaying integration scenarios

Clones: quick and easy with high
maintenance costs

Patch

Patch

Clone project

Propagate
change

Re-engineering to enable systematic
reuse

 Main

Cloned
Variant1

Cloned
Variant2

?

?

Patch

Derive the
cloned variants

Derive the
cloned variants

Patch
Patch

Variant integration vs. regular merging
● Variant integration: cohabilitiating features to enable variants (semantics!)
● Regular merging: greedy - delegate conflicts (syntax!)
● Goals are different:

○ Ensuring that multiple features work together, contra
○ Single implementation of parallel changes

Diffing to the rescue?

Mainline Fork

Diffing to the rescue?

Mainline Fork

Diff doesn’t work :(

diff -D FORK

Proper integrated AST is hard to
construct by hand

Our goal:

Support re-engineering of clone-based variants
into software product lines using intentions and
views
Achieved by:

● Abstraction from source code
● Intuitive intentions
● Views to explore results
● Interactive process

Integration process:
1. Automatically generate integrated AST from two variants
2. Explore integrated AST using views
3. Edit variational AST - add integration intentions

variant’.cpp

variant.cpp

integrated AST

views

intentions

Integration process:
1. Automatically generate integrated AST from two variants
2. Explore integrated AST using views
3. Edit variational AST - add integration intentions

integrated AST

views

intentions

Benefits:

● The code can be compiled
● Test suites can be run
● Variants can be derived

Views and intentions in action

IN
CL

IN
E

in
 a

ct
io

n!

What are integration intentions?
● Intentions are intuitive declarations reflecting the developer’s integration goal

○ e.g., keep functionality, remove functionality, keep as configurable feature

● Declared on blocks of code, shown in the different views
● Control the desired structure of the integrated file
● Intentions are automatically resolved on the integrated AST

● Benefits: raise abstraction level from #if structures to intuitive intentions

Intentions:
● Keep
● Remove
● KeepAsFeature
● Exclusive
● AssignFeature
● Postpone

Intentions: Keep
● Keep
● Remove
● KeepAsFeature
● Exclusive
● AssignFeature
● Postpone Keep intention Result

Intentions: Exclusive

Exclusive intention Result

● Keep
● Remove
● KeepAsFeature
● Exclusive
● AssignFeature
● Postpone

Evaluation - so far
1. Completeness - intentions suffice
2. Correctness - intentions execution produces correct results
3. Efficiency - using intentions is faster than using unstructured approach

Method: Replay merge commits using ordinary tool and prototype tool.

1. Well, do they?
2. Check that output is well-formed.
3. Record number of edit operations.

Evaluation observations (so far)
1. Completeness: The intentions suffice for performing common integration tasks.

Often, just using Keep and Remove resolve the task.
2. Correctness: When the intentions are correctly declared, they produce a

correctly integrated configurable platform.
3. Efficiency: Developers need to perform substantially fewer operations using

our approach.

Evaluation - next step
Challenges:

● Getting more examples (open source + industry projects)
● Controlled experiment, given better tool and intentions:

○ User study: students and professional developers to perform integration tasks
○ Compare time/efficiency and correctness

Summary

